[ Pobierz całość w formacie PDF ]

102 (1974), 241-280.
[Ray2]
,Spécialisation du foncteur de Picard, Publ.Math.IHES 38 (1970), 27-76.
¯
[Ri1] K.A.Ribet,On modular representations of Gal(Q/Q) arising from modular forms,
Invent. Math. 100 (1990), 431-476.
[Ri2]
, Congruence relations between modular forms, Proc. Int. Cong. of Math.
17 (1983), 503-514.
¯
[Ri3]
, Report on mod l representations of Gal(Q/Q), Proc. of Symp. in Pure
Math. 55 (1994), 639-676.
[Ri4]
, Multiplicities of p-finite mod p Galois representations in J0(Np), Boletim
da Sociedade Brasileira de Matematica, Nova Serie 21 (1991), 177-188.
[Ru1] K. Rubin, Tate-Shafarevich groups and L-functions of elliptic curves with complex
multiplication, Invent. Math. 89 (1987), 527-559.
[Ru2]
, The  main conjectures of Iwasawa theory for imaginary quadratic fields,
Invent. Math. 103 (1991), 25-68.
[Ru3]
, Elliptic curves with complex multiplication and the conjecture of Birch
and Swinnerton-Dyer, Invent. Math. 64 (1981), 455-470.
[Ru4]
, More  main conjectures for imaginary quadratic fields, CRM Proceedings
and Lecture Notes, 4, 1994.
[Sch] M. Schlessinger, Functors on Artin Rings, Trans. A. M. S. 130 (1968), 208-222.
[Scho] R. Schoof, The structure of the minus class groups of abelian number fields,
in Seminaire de Théorie des Nombres, Paris (1988-1989), Progress in Math. 91,
Birkhauser (1990), 185-204.
¯
[Se] J.-P. Serre, Sur les représentationes modulaires de degré 2 de Gal(Q/Q), Duke
Math. J. 54 (1987), 179-230.
[de Sh] E. de Shalit, Iwasawa Theory of Elliptic Curves with Complex Multiplication,
Persp. in Math., Vol. 3, Academic Press, 1987.
[Sh1] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions,
Iwanami Shoten and Princeton University Press, 1971.
[Sh2]
, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc.
(3) 31 (1975), 79-98.
[Sh3]
, The special values of the zeta function associated with cusp forms, Comm.
Pure and Appl. Math. 29 (1976), 783-803.
MODULAR ELLIPTIC CURVES AND FERMAT S LAST THEOREM 551
[Sh4] , On elliptic curves with complex multiplication as factors of the Jacobians
of modular function fields, Nagoya Math. J. 43 (1971), 1999-208.
[Ta] J.Tate,p-divisible groups, Proc.Conf.on Local Fields,Driebergen,1966,Springer-
Verlag, 1967, pp. 158-183.
[Ti1] J.Tilouine,Un sous-groupe p-divisible de la jacobienne de X1(Npr) comme module
sur l algebre de Hecke, Bull. Soc. Math. France 115 (1987), 329-360.
[Ti2] , Théorie d Iwasawa classique et de l algebre de Hecke ordinaire, Comp.
Math. 65 (1988), 265-320.
[Tu] J.Tunnell,Artin s conjecture for representations of octahedral type,Bull.A.M.S.
5 (1981), 173-175.
[TW] R. Taylor and A. Wiles, Ring theoretic properties of certain Hecke algebras,
Ann. of Math. 141 (1995), 553-572.
[We] A.Weil,Uber die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen,
Math. Ann. 168 (1967), 149-156.
[Wi1] A.Wiles, On ordinary »-adic representations associated to modular forms, Invent.
Math. 94 (1988), 529-573.
[Wi2] ,On p-adic representations for totally real fields, Ann.of Math.123(1986),
407-456.
[Wi3] , Modular curves and the class group of Q(¶p), Invent. Math. 58 (1980),
1-35.
[Wi4] , The Iwasawa conjecture for totally real fields, Ann. of Math. 131 (1990),
493-540.
[Win] J.P.Wintenberger, Structure galoisienne de limites projectives d unitées locales,
Comp. Math. 42 (1982), 89-103.
(Received October 14, 1994) [ Pobierz całość w formacie PDF ]

  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • pomorskie.pev.pl
  • Archiwum

    Home
    Nora Roberts Tajemnicza gwiazda
    Edmund Niziurski Siódme wtajemniczenie
    1 s2.0 S0006349502751825 main
    Alme
    Comedy Incarnate_ Buster Keaton, Physica Noel Carroll
    Cartland Barbara Tajemnica doliny
    Lifting the Fog of Peace How Americans Learned to Fight Modern War
    Hill Livingston Grace Bilśźej serca 02 Dziewczyna, do której sić™ wraca
    Mull Brandon BaśÂ›niobór 01 BaśÂ›niobór
    Duquette Anne Marie Ocalony przez miłoÂść
  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • andsol.htw.pl