[ Pobierz całość w formacie PDF ]
102 (1974), 241-280.
[Ray2]
,Spécialisation du foncteur de Picard, Publ.Math.IHES 38 (1970), 27-76.
¯
[Ri1] K.A.Ribet,On modular representations of Gal(Q/Q) arising from modular forms,
Invent. Math. 100 (1990), 431-476.
[Ri2]
, Congruence relations between modular forms, Proc. Int. Cong. of Math.
17 (1983), 503-514.
¯
[Ri3]
, Report on mod l representations of Gal(Q/Q), Proc. of Symp. in Pure
Math. 55 (1994), 639-676.
[Ri4]
, Multiplicities of p-finite mod p Galois representations in J0(Np), Boletim
da Sociedade Brasileira de Matematica, Nova Serie 21 (1991), 177-188.
[Ru1] K. Rubin, Tate-Shafarevich groups and L-functions of elliptic curves with complex
multiplication, Invent. Math. 89 (1987), 527-559.
[Ru2]
, The main conjectures of Iwasawa theory for imaginary quadratic fields,
Invent. Math. 103 (1991), 25-68.
[Ru3]
, Elliptic curves with complex multiplication and the conjecture of Birch
and Swinnerton-Dyer, Invent. Math. 64 (1981), 455-470.
[Ru4]
, More main conjectures for imaginary quadratic fields, CRM Proceedings
and Lecture Notes, 4, 1994.
[Sch] M. Schlessinger, Functors on Artin Rings, Trans. A. M. S. 130 (1968), 208-222.
[Scho] R. Schoof, The structure of the minus class groups of abelian number fields,
in Seminaire de Théorie des Nombres, Paris (1988-1989), Progress in Math. 91,
Birkhauser (1990), 185-204.
¯
[Se] J.-P. Serre, Sur les représentationes modulaires de degré 2 de Gal(Q/Q), Duke
Math. J. 54 (1987), 179-230.
[de Sh] E. de Shalit, Iwasawa Theory of Elliptic Curves with Complex Multiplication,
Persp. in Math., Vol. 3, Academic Press, 1987.
[Sh1] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions,
Iwanami Shoten and Princeton University Press, 1971.
[Sh2]
, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc.
(3) 31 (1975), 79-98.
[Sh3]
, The special values of the zeta function associated with cusp forms, Comm.
Pure and Appl. Math. 29 (1976), 783-803.
MODULAR ELLIPTIC CURVES AND FERMAT S LAST THEOREM 551
[Sh4] , On elliptic curves with complex multiplication as factors of the Jacobians
of modular function fields, Nagoya Math. J. 43 (1971), 1999-208.
[Ta] J.Tate,p-divisible groups, Proc.Conf.on Local Fields,Driebergen,1966,Springer-
Verlag, 1967, pp. 158-183.
[Ti1] J.Tilouine,Un sous-groupe p-divisible de la jacobienne de X1(Npr) comme module
sur l algebre de Hecke, Bull. Soc. Math. France 115 (1987), 329-360.
[Ti2] , Théorie d Iwasawa classique et de l algebre de Hecke ordinaire, Comp.
Math. 65 (1988), 265-320.
[Tu] J.Tunnell,Artin s conjecture for representations of octahedral type,Bull.A.M.S.
5 (1981), 173-175.
[TW] R. Taylor and A. Wiles, Ring theoretic properties of certain Hecke algebras,
Ann. of Math. 141 (1995), 553-572.
[We] A.Weil,Uber die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen,
Math. Ann. 168 (1967), 149-156.
[Wi1] A.Wiles, On ordinary »-adic representations associated to modular forms, Invent.
Math. 94 (1988), 529-573.
[Wi2] ,On p-adic representations for totally real fields, Ann.of Math.123(1986),
407-456.
[Wi3] , Modular curves and the class group of Q(¶p), Invent. Math. 58 (1980),
1-35.
[Wi4] , The Iwasawa conjecture for totally real fields, Ann. of Math. 131 (1990),
493-540.
[Win] J.P.Wintenberger, Structure galoisienne de limites projectives d unitées locales,
Comp. Math. 42 (1982), 89-103.
(Received October 14, 1994)
[ Pobierz całość w formacie PDF ]